Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode.

نویسندگان

  • Iván Mora-Seró
  • Sixto Giménez
  • Thomas Moehl
  • Francisco Fabregat-Santiago
  • Teresa Lana-Villareal
  • Roberto Gómez
  • Juan Bisquert
چکیده

Colloidal CdSe quantum dots (QDs) of different sizes, prepared by a solvothermal route, have been employed as sensitizers of nanostructured TiO(2) electrode based solar cells. Three different bifunctional linker molecules have been used to attach colloidal QDs to the TiO(2) surface: mercaptopropionic acid (MPA), thioglycolic acid (TGA), and cysteine. The linker molecule plays a determinant role in the solar cell performance, as illustrated by the fact that the incident photon to charge carrier generation efficiency (IPCE) could be improved by a factor of 5-6 by using cysteine with respect to MPA. The photovoltaic properties of QD sensitized electrodes have been characterized for both three-electrode and closed two-electrode solar cell configurations. For three-electrode measurement a maximum power conversion efficiency near 1% can be deduced, but this efficiency is halved in the closed cell configuration mainly due to the decrease of the fill factor (FF).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SILAR Sensitization as an Effective Method for Making Efficient Quantum Dot Sensitized Solar Cells

CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR meth...

متن کامل

Restricted charge recombination process in PbS quantum dot sensitized solar cells by different coating cycles of ZnS films

The relatively low power conversion efficiency (PCE) of quantum dot sensitized solar cells (QDSSCs) is attributed to charge recombination at the interfaces. Charge recombination process could be suppressed by coating the QD layer with a wide band gap semiconductor such as ZnS, which acts as a blocking layer between the QDs and hole transport material (HTM). In present study, to improve PCE of P...

متن کامل

Quantum dot-sensitized solar cells having 3D-TiO2 flower-like structures on the surface of titania nanorods with CuS counter electrode

The photovoltaic performance of a quantum dot (QD)-sensitized solar cell consisting of CdS/CdSe/ZnS QDs loaded onto the surface of the three-dimensional (3D) flower-like TiO2 structure grown on an array (1D) of TiO2 nanorods (FTiR) is studied. The flower-like structure on the rod-shaped titania was synthesized using a double-step hydrothermal process. The FTiR array exhibited a 3D/1D composite ...

متن کامل

Photovoltaic Performance of Dye-Sensitized Solar Cell (DSSC) Fabricated by Silver Nanoclusters-Decorated TiO2 Electrode via Photochemical Reduction Technique

In this investigation, Ag@TiO2 nanocomposite was prepared by deposition of silver nanoclusters onto commercial TiO2 nanoparticles (known as P25 TiO2) via photodeposition technique as clean and simple photochemical route. The synthesized Ag@TiO2 nanocomposite was utilized in the fabrication of dye-sensitized solar cell (DSSC) chiefly because, compared ...

متن کامل

Optical Studies and Photovoltaic Performance of Nanocrystalline Titanium Dioxide Sensitized with Local Dye

Nanocrystalline titanium (iv) oxide paste has been deposited on Fluorine doped tin oxide glass substrate by the blade method. The deposited film was subjected to thermal treatment to obtain an electrode foe a photo-electrochemical cell. The electrode was sensitized with prophyrin dye which was a local dye extracted from carica papaya leaves. Avaspec 2.1 spectrophotometer was used to obtain the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanotechnology

دوره 19 42  شماره 

صفحات  -

تاریخ انتشار 2008